Ingresa un problema...
Álgebra lineal Ejemplos
,
Paso 1
Obtén la forma del sistema de ecuaciones.
Paso 2
Paso 2.1
The inverse of a matrix can be found using the formula where is the determinant.
Paso 2.2
Find the determinant.
Paso 2.2.1
El determinante de una matriz puede obtenerse usando la fórmula .
Paso 2.2.2
Simplifica el determinante.
Paso 2.2.2.1
Simplifica cada término.
Paso 2.2.2.1.1
Multiplica por .
Paso 2.2.2.1.2
Multiplica .
Paso 2.2.2.1.2.1
Multiplica por .
Paso 2.2.2.1.2.2
Multiplica por .
Paso 2.2.2.2
Suma y .
Paso 2.3
Since the determinant is non-zero, the inverse exists.
Paso 2.4
Substitute the known values into the formula for the inverse.
Paso 2.5
Multiplica por cada elemento de la matriz.
Paso 2.6
Simplifica cada elemento de la matriz.
Paso 2.6.1
Cancela el factor común de .
Paso 2.6.1.1
Factoriza de .
Paso 2.6.1.2
Cancela el factor común.
Paso 2.6.1.3
Reescribe la expresión.
Paso 2.6.2
Combina y .
Paso 2.6.3
Mueve el negativo al frente de la fracción.
Paso 2.6.4
Cancela el factor común de .
Paso 2.6.4.1
Cancela el factor común.
Paso 2.6.4.2
Reescribe la expresión.
Paso 2.6.5
Cancela el factor común de .
Paso 2.6.5.1
Factoriza de .
Paso 2.6.5.2
Cancela el factor común.
Paso 2.6.5.3
Reescribe la expresión.
Paso 3
Multiplica por la izquierda ambos lados de la ecuación de matriz por la matriz inversa.
Paso 4
Cualquier matriz multiplicada por su inversa es igual a todo el tiempo. .
Paso 5
Paso 5.1
Two matrices can be multiplied if and only if the number of columns in the first matrix is equal to the number of rows in the second matrix. In this case, the first matrix is and the second matrix is .
Paso 5.2
Multiplica cada fila en la primera matriz por cada columna en la segunda matriz.
Paso 5.3
Simplifica cada elemento de la matriz mediante la multiplicación de todas las expresiones.
Paso 6
Simplifica los lados izquierdo y derecho.
Paso 7
Obtén la solución.